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The vibrational behaviour of crystallographic defects associated with a single chain were investigated for 
a dispiration, disclination, and dislocation in polyethylene. An approximate longitudinal modulus for the 
defects was determined by using conformational calculations to estimate the energy changes associated 
with changes in the length of a defect. This modulus, combined with the mass per unit length of the 
defect, was used to estimate the lowest longitudinal frequency of the defect, which was found to be 
around 100 cm ~ for all the defects considered. Normal mode vibrational calculations for oligomers 
containing defects showed that the predicted lowest longitudinal modes could be identified by 
examination of the displacements associated with modes occurring in the estimated frequency range. It 
was shown that the defects could be considered as localized oscillators embedded in the crystal and 
coupled to the vibrational modes of the crystal. The presence of defects provides special mechanisms for 
coupling light waves and lattice vibrations in the crystal which may affect the Raman spectrum. 

(Keywords: crystal vibrations; defect vibrations; disclination; dislocation; dispersion relations; 
dispiration; longitudinal mode; polyethylene crystals) 

INTRODUCTION 

Some of the effects of a particular crystallographic defect 
associated with a single chain and called a dispiration 1 on 
the longitudinal acoustic mode or LAM of crystalline 
polyethylene were described by Reneker and Fanconi 2. 
The impetus for that work was to provide an explanation 
for the decrease in the integrated Raman intensity of the 
longitudinal acoustic mode with increasing temperature 
that was first observed by Koenig and Tabb 3 and later by 
Snyder et al. 4. Reneker and Fanconi 2 suggested that the 
decrease in Raman intensity resulted from the fact that the 
effective modulus associated with displacements along the 
chain axis is much lower for a defect than is the case for a 
planar zigzag chain conformation. In a defect, displace- 
ments occur which lead to the deformation of torsional 
coordinates and to changes in the intermolecular dis- 
tances. The change in the potential energy which accom- 
panies the changes in these coordinates is smaller than for 
longitudinal extension or compression of a zigzag chain. 
It was found in the present work that the changes in the 
interatomic distances between the defect and the sur- 
rounding chains in the deformed lattice provide the 
largest contribution to the value of the effective longitu- 
dinal modulus. Generally higher moduli were calculated 
by McCullough et al. s for short non-planar zigzag 
sequences with intermolecular interactions neglected. 

The effect of the lower modulus associated with the 
defects is more pronounced in the low frequency vib- 
rations since they involve primarily skeletal deformations. 
In this paper the low frequency vibrations of crystallog- 
raphic defects associated with single chains are in- 
vestigated. Since the ends of the defect are attached to 

planar zigzag segments, it is necessary to consider the 
coupling of defect vibrations to vibrations of the planar 
zigzag segments. This is done with the aid of the 
frequency-dispersion curves for the polyethylene lattice. 

Frequency-dispersion curves based on the crystal 
model are used to calculate minimum energy confor- 
mations of defects and other lattice models. For the 
phonons which propagate in the chain direction, disper- 
sion curves for orthorhombic and triclinic lattices are 
from the review paper by Barnes and Fanconi 6. Disper- 
sion curves for phonons which propagate in directions 
other than the chain direction are from the review paper 
by Kitagawa and Miyazawa 7. Analysis of the dispersion 
curves shows the possibility of defect vibrations coupling 
to lattice modes propagating not only along the chain 
stem axis, but also in other directions. 

In the first part of the paper a 'static' modulus is 
calculated for the defect region by observing the change in 
the defect energy as the defect is shortened or lengthened 
in small increments. The defect itself is then considered as 
an elastic rod with the calculated modulus and a density 
near that of polyethylene. This leads to an estimate of the 
lowest longitudinal frequency of an isolated defect. The 
next section deals with the detailed vibrational normal 
mode calculations of defect containing oligomers either 
10, 15 or 21 carbon atoms long. 

A defect, (either a dispiration or a disclination), was 
placed at various positions along the chain. Dislocations 
were numerically unstable in the modulus calculations 
with the short oligomers used, but would clearly behave in 
a similar manner. Analysis of the atomic displacements for 
the modes in the low frequency range showed that the 
displacements in the defect region were encompassed in a 
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general way by simple theoretical arguments and pre- 
dictions. The defects tend to vibrate at their own natural 
frequencies and to couple to normal modes of the 
polyethylene crystal that have the same frequency. The 
last section of the paper deals with the calculated Raman 
intensities of the defect vibrations. The calculations, based 
on the bond polarizability method, show that the Raman 
intensity associated with the lowest longitudinal fre- 
quency of the defect might contribute to the observed 8 
intense irregular background in the Raman spectrum in 
the frequency region of 85 cm-  1 to 105 cm-  1. 

I. ELASTIC DEFORMATION OF DEFECTS, VIA 
STATIC CALCULATIONS 

(a) Description of calculations 
The static calculations of the modulus were performed 

by moving the two terminal atoms of a defect toward each 
other along the chain axis by small increments and 
calculating the defect energy after each increment. The 
terminal atoms are identified as those encompassing 
virtually the entire defect. In the dispiration and dislo- 
cation the two forced atoms enclose a 7-bond segment and 
in the disclination, a 6-bond segment. The only con- 
strained coordinates are the longitudinal positions of the 
terminal atoms. All others are free to move in any 
direction. The two perpendicular directions of the forced 
atoms are also free to adjust themselves. At each step, the 
entire system consisting of a central, defect-containing 
chain plus the six chains of the inner shell, was energy- 
minimized. The packing energy program employed in the 
current calculations was described in detail in ref. 9. 

For the dispiration, the same calculation was repeated 
for tensile forces, that is, the terminal atoms were dis- 
placed away from each other. All calculations were 
performed on 21 carbon atom oligomers. For the dispi- 
ration, the calculations were repeated on shorter, 15 
carbon atom oligomers in order to evaluate contributions 
to the static modulus associated with parts of the chain 
outside the defect. Such contributions were small. 

A few comments should be made about the starting 
defect conformations employed in conjunction with pre- 
sent calculations, both static and dynamic. The defect 
conformations reported previously I were artificially con- 
strained at the ends of the defect-bearing 21 carbon atom 
oligomers, so that they fit into the lattice and there was no 
mismatch as the chain continued into the crystal. These 
constraints were removed to minimize the energy changes 
outside the defect when the defect is statically deformed 
and to perform simultaneous calculations of the normal 
mode vibrations. 

The conformation of the dispiration changed only 
slightly upon the removal of the constraints at the chain 
ends. However, the disclination changed considerably. It 
assumed a more compact arrangement (see Figure 1). The 
entire 360 ° of twist was confined within a short segment. 
This indicates that the forces that were previously applied 
to the ends of the model chain, to insure that parts of the 
chain outside the defect fit into the lattice were in a 
direction that tended to extend the disclination. The 
compact form of the disclination is more stable in a short 
alkane crystal, while in a longer molecule the more 
extended gentle twist of 180 ° combined with a compact 
180 ° twist is more stable 1. This suggests the possibility 
that in a crystal with very long stems a disclination might 
have 360 ° of gentle twist with no dihedral angles near the 
gauche conformation. The modulus of the gentle twist 
would approach the higher value associated with the 
zigzag conformation, with little effect on the longitudinal 
acoustic mode intensity as reported in ref. 2. 

For the dislocation, removal of constraints causes the 
defect to transform into a partial dislocation (with only 
one extra CH2 group). A different procedure was nec- 
essary in this case. Starting with the oligomer initially 
constrained at each ends, these constraints were removed 
from the chain-terminal atoms at the same time as the 
displacements were applied to the defect. For the dislo- 
cation the calculated energy change versus squared strain 
for both extension and compression fell on the same line 
since the minimum energy conformation could not be 
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Figure 1 Minimum energy conformation of a disclination in a C-19 oligomer. The two chain ends are not constrained and the chain is 
slightly contracted, resulting in crystallographic mismatch. Notice that the total 360 ° twist is almost entirely confined within a 6-bond-long 
segment. The twist along the chain length is plotted on one side of the box. On the opposite face of the box the accumulated bend is 
plotted vs. the chain length. When the two ends of the chain are fixed to lattice sites, the twist is more spread out over the chain length, 
as can be seen from Figures 14A and 14B of ref. 1 
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Figure 2 Plot of energy increment v e r s u s  squared strain. Plots 
are for both contractile and tensile forces. The calculations are on 
chains of C-15 and C-21 chains containing dispirations. The 
deformed chains are imbedded in an orthorhombic crystal lattice. 
The entire system, consisting of the deformed chain and the six 
chains of the inner shell, was energy-minimized at each step. 
Calculations were performed at strain intervals of 0.0067. 

(~) C21; (×) 015 

forces) or toward the molecular centre (contractile forces). 
The cartesian coordinates employed here are the same as 
used previously a. The z direction coincides with the chain 
axis. The x direction is perpendicular to the chain axis in 
the zigzag plane, while the y direction is perpendicular to 
this plane. The two drawings at the left side and at the 
fight side of Fioure 4 are stereo pairs. In these stereo 
pairs, the thick line shows displacements for tensile forces, 
while the thin line describes the case of contractile forces. 
The overall separation of the terminal atoms was shor- 
tened by 0.03 nm for contractile forces, while for tensile 
forces it was increased by the same amount. Figure 4 also 
shows the displacements of the carbon atoms along each of 
the three cartesian coordinates. There are two sets of these 
three displacements, one for tensile forces, the other for 
contractile forces. These displacements are inserted in 
Figure 4 between the two stereo pairs. The cartesian 
displacements are plotted in this Figure versus the lo- 
cation of the backbone atoms along the chain axis. The 
backbone atoms subject to the application of the tensile or 
contractile forces, and the direction of these forces, are 
shown by arrows. Particular attention should be given to 
the transverse displacements shown in Figure 4. The 
significance of these displacements for the problem of 
defect coupling with the displacements of atoms in the 
zigzag segments is briefly discussed in Chapter V. 

obtained. Since the starting dislocation was not at its 
minimum energy conformation, normal mode calcu- 
lations could not be performed for the dislocation. 

(b) Calculation of static modulus 
The results of the calculations are shown in Figure 2 

and 3. In these Figures AE, energy increments, are plotted 
versus squared strain. The slopes in the linear part of the 
curves determine the static modulus for the defect. As seen 
from these Figures, the calculated moduli for tensile and 
contractile forces are not the same. This difference is 
associated with the tendency for the defect-containing 
oligomer to change its overall length as compared with 
the lengths of the surrounding chains. The resulting 
apparent asymmetry in the calculated potential is attri- 
buted to the fact that the true minimum conformation is 
not always obtainable with the numerical algorithm 
employed. This results in the differences in the computed 
moduli in the shorter chain. In the case of dispiration, the 
modulus for applied tensile forces is higher, by about 25~, 
than that computed for contractile applied forces (see 
Figure 2). For tensile forces the modulus for the discli- 
nation is lower, and for dislocation higher, than their 
respective moduli for the contractile forces. We also 
performed static calculations on shorter chains, with 15 
carbon atoms. The modulus could be calculated only for 
compressive forces because the calculation for tensile 
forces became numerically unstable. The calculated mo- 
dulus for a dispiration in a 15 carbon atom oligomer was 
found to be about 30~ lower than that for 21 carbon atom 
oligomer. Although the exact modulus depends on the 
detailed structure of the defect, the modulus for all the 
defects calculated falls in the range of 45 _+ 15 GPa. 

(c) Defect atom displacements in static calculations 
Figure 4 shows the static displacements of chain atoms 

when a dispiration is subjected to external forces acting 
along the chain axis in either opposite directions (tensile 

II. NORMAL MODE CALCULATIONS OF THE 
LOWEST LONGITUDINAL FREQUENCY OF 
DEFECTS AND INTERRELATION WITH THE 
RESULTS FROM STATIC CALCULATIONS 

The static computations described above provide an 
estimate of the effective modulus of the defect that, 
combined with the mass per unit length of the defect, 
permits the calculation of the lowest longitudinal fre- 
quency of the defect. This frequency is associated with a 
vibration in which the longest dimension of the defect is 
approximately one-half the wavelength. In a defect there 
are also frequencies, not discussed in detail in this paper, 
which are associated with torsional or shear displace- 
ments and which are lower in frequency than the lowest 
longitudinal frequency. The defects are thought of as 
small resonators with natural frequencies which permit 
strong interactions with particular normal modes of 
polyethylene crystals. The normal modes were investi- 
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Figure 3 Pitt of energy increment v e r s u s  squared strain. The 
curves compare moduli for the three crystallographic defects of a 
single chain investigated in the paper, that is, dispiration, 
disclination, and dislocation. The defect-containing chains are 21 
C-atoms long. Calculations are for contractile forces only 
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Figure 4 Dispiration near the centre of the C-21 oligomer. Static calculations. The two stereo pairs at the left side and the right side of 
the Figure show the displacements for tensile forces and for contractile forces superimposed on each other. The thick line is for tensile 
forces and the thin for contractile forces. The centre of the Figure shows two sets of displacement along the three cartesian axes, one for 
tensile forces, the other for contractile forces. The atoms initially displaced, and the direction of the displacements are shown by arrows. 
Notice slight displacements in the transverse (x and y) directions in the zigzag segments, i.e., outside the parts of the chain between the 
arrows. These displacements result from the motions of the entire chain in the matrix of intermolecular forces 
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Figure § Dispiration in the C-10 chain. Dynamic calculations. 
Displacements a r e  f o r  the normal frequency of 150 cm -1 . The 
defect is considered to be isolated, i.e., uncoupled to zigzag 
segments. Notice the longitudinal mode along the chain (z) axis 
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gated in detail by complete normal mode calculations on 
oligomer chains containing particular defects in their low- 
energy conformation at particular points in the chain. In 
these short oligomers, end effects play a much larger role 
than in stems of the length found in polyethylene. Effort is 
required to sort out the features most important in real 
polyethylene crystals with long planar zigzag segments. 

As a first step, normal mode calculations were perfor- 
med in a lattice built of short chains in which a defect 

occupies almost the entire length of the central chain. We 
selected a C10H22 oligomer containing a dispiration. The 
short chain length leaves only the two terminal methyl 
groups outside the defect. We define this as a bare defect, 
that is, a defect unperturbed by zigzag segments. The 
displacements of this defect in the longitudinal (z) direc- 
tion form a monotonic curve when plotted versus the 
chain-length, as can be seen from Figure 5. The displace- 
ments associated with this frequency strongly resemble 
those of LAM-1 in a zigzag chain, except for the presence 
of a considerable amount of transverse displacement (see 
Figure 5). This is the frequency referred to above as the 
'lowest longitudinal frequency of the defect'. The longitu- 
dinal displacements with only one node also strongly 
resemble those of a one-dimensional rod with a mass-per- 
unit length proportional to Nil, where N is the number of 
carbon atoms in the defect and I is the length of the defect. 
In this bare defect, there is a standing wave of wavelength 
equal to twice the length of the oligomer and with 
wavenumber k= =nil. This standing wave has displace- 
ments similar to these shown in Figure 4. 

The wavenumber (which is referred to as 'fre- 
quency' as is the practice in vibrational spectroscopy) of 
the defect calculated from the static modulus and the 
defect length can be approximated from the rod model. 
The lowest longitudinal frequency of a continuous elastic 

, _I_L -/_G 
rod is given by ,od--2c,L~[ p where G is the elastic 

modulus equal to 44 GPa from Figure 3, p the density, c' 
the velocity of light, and L the length of the rod. For both 
the dispiration and the disclination, L~0.76nm. The 
predicted defect frequency calculated from the modulus 
and the length of the defect-rod is found to equal 
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147 cm -  1. This is in a good agreement with the longitu- 
dinal frequency of the defect in a 10-carbon atom chain, 
which is found to equal 150 cm-  1. There is an alternative 
way to estimate the longitudinal frequency of the defect. 
The observed LAM-1 frequency in crystalline n-heptane, 
the oligomer whose length is the same as the length of the 
disclination or dispiration, is 311 cm - 1. One has to realize 
that the rod model is very approximate for short chain 
oligomers. The calculated frequency for C7 would be 
3 4 5  c m  - 1  rather than the observed 311 cm 1. From the 
ratio of the zigzag modulus to the defect modulus 
(340 - 44 = 7.7) the predicted longitudinal frequency of the 
defect is 125 cm-1,  again in qualitative agreement with 
our estimate based on the calculations for a defect in a C- 
10 oligomer. 

When the ends of a defect are both coupled to zigzag 
segments, the basic features of the defect vibration 
described above are preserved. The coupling of the defect 
to zigzag segments tends to lower the frequency of the 
defect. In short chains the defect frequency decreases with 
the increase in the length of the zigzag segment coupled to 
it, and rapidly reaches a limiting value, as the zigzag 
segment length increases. In the C-15 oligomer, the 
longitudinal frequency of the defect in our crystal model is 
split into three frequencies, 121,107 and 90 cm-  1. In C-21 
oligomer, the defect frequencies occupy a range between 
105 and 85 cm- l .  This frequency range is found to be 
independent of the defect position in the chain, although 
the exact frequencies are dependent on defect position. 
The lowering of the defect frequency when it is coupled to 
zigzag segments can be attributed to a mass effect. The 
problem of the mass effect on lowering the frequencies has 
been originally treated by Fanconi and Crissman ~°, who 
investigated the effect of a methyl group branch on the 
LAM-1 frequency in a zigzag chain. The point mass 
required to create the calculated frequency lowering can 
be estimated from the mass perturbation theory of Hsu 
and Krimm 11. The added effective mass required at each 
end of a defect is found to be only 18 to 20 atomic mass 
units, hardly exceeding the mass of a methylene group. 
Considering the fact that the effective mass of the defect- 
resonator is rather small, the coupling of the defect to the 
zigzag segments can easily account for the observed 
decrease in its frequency. The existence of a longitudinal 
frequency for a defect, that is a frequency which is 
independent of the length of attached chains, can also be 
inferred from a study of the relaxation and correlation of 
the motion of two heavy masses separated by a finite 
number of particles with small masses, all of them coupled 
by harmonic forces to their neighbours in an infinitely 
long chain ~ 2. In a related problem, the effect of nonplanar 
zigzag sequences on the frequency of the unperturbed 
longitudinal acoustic mode was investigated theoretically 
by Strobl ~ 3 

III. ANALYSIS OF NORMAL M O D E  
CALCULATIONS 

In this work we are concerned only with those dispersion 
curves that correspond to the low-frequency vibrations of 
the crystal. Although commonly referred to as curves, the 
dispersion relations for a crystal are a set of sheets in a 4- 
dimensional space which show the eigen-frequencies of 
the crystal for each crystal momentum vector k in 

reciprocal lattice space (also called momentum space or 
phase space). For  polymer crystals an interesting part of 
the dispersion relations corresponds to waves propagat- 
ing along the chain or z-axis. Plotted as frequency versus 
phase, those are the curves that spectroscopists often use 
to summarize their comparisons of experimental and 
calculated frequencies. We will use them to analyse the 
coupling between defect and lattice vibrations. After a 
discussion of dispersion curves for waves propagating in 
the chain direction in various models and crystallog- 
raphic modifications of polyethylene, we will comment on 
the coupling between defect vibrations and waves pro- 
pagating in other directions through the crystal, using the 
information available in literature. 

(a) Low frequency dispersion curves for oligomer crystal 
model used for defect energy calculations 

Our normal coordinate calculation for a defect- 
containing lattice are based on a model which assumes 
that the neighbours to the defect-containing chain are 
deformed to minimize energy but do not vibrate. In order 
to gain insight into the nature of coupling of the 
vibrating defect with the zigzag chain segments, a disper- 
sion curve for a central molecule in the planar zigzag 
conformation in which the chains surrounding the cen- 
tral, vibrating chain are kept rigid, was calculated, and is 
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F i g u r e  6 Low frequency dispersion curves showing coupling of 
defect vibrations to points on the dispersion curves. The basis for 
the calculated frequency versus wave vector curves is the lattice 
model employed in the present work. The four branches of the 
dispersion curves are labelled A, B, C and D. The shaded area 
s h o w s  the frequency range at which the frequencies of the 
vibrating zigzag segments are in the range of the lowest 
longitudinal frequency of a defect. The frequencies are plotted 
versus k z, the component of the wave vector along the z axis, 
assuming that the components of the vector k in directions 
perpendicular to the chain axis are zero. In this Figure and the 
subsequent two dispersion curves k z is in ~ /c  units with 
c=0.247 nm. The bottom scale of the abscissa is in terms 
of s, the number of C-C bonds between nodes. The relationship 
between k z and s is given in the text 
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shown in Figure 6. The dispersion curves shown in Figure 6 
were calculated on the basis of normal coordinate 
calculations performed on series of crystalline n-alkanes 
(C-7 to C-21). The dispersion curves were extrapolated to 
the wavevector k=0.  In Figure 6 the components of the 
wavevector k in directions perpendicular to the chain axis 
are zero. Hence, k=  kz, and k~ ranges from 0 to k z max, 
which is n/c (c =0.247 nm, the crystallographic repeat 
distance). The calculated dispersion curves are shown for 
the first Brillouin zone for the unit cell with a repeat unit of 
two CH 2 groups. 

Spectroscopists customarily replace the momentum 
vector _k by the dimensionless phase difference vector ~b. 
The domain of this vector is called phase difference space. 
The allowed values of this vector are in a cell with 
origin at (0,0,0) and other corners located at (ct,fl,7) where 
:t, fl and ~ assume either 0 or rt values. In Figure 6, the 
dispersion curves are plotted versus the phase differences 
along the z-axis, that is, versus kz in units of~/c. There are 
four separate dispersion curves which are monotonic 
functions of frequency in the low frequency range of 
interest, i.e., in the range of the calculated defect frequen- 
cies. These curves, referred to as branches of a multi- 
valued function of frequency as a function of the wave vec- 
tor _k, are marked by A, B, C and D in Figure 6. The zero 
wave vector frequencies of the modes observable in 
Raman and infra-red spectroscopy are indicated by the 
kz = 0 intercepts of the four branches with the frequency 
axis. Normal coordinate analysis assigns the frequency at 
the intersection of the B branch with the frequency axis of 
Figure 6 to twisting oscillations of the chain about its 
longitudinal axis (also called the optical rotational mode 
in the polymer literature). The remaining three branches 
intersect the k, = 0 axis at frequencies of an undeformable 
rod vibrating in an anisotropic elastic matrix. In an 
infinite lattice, these frequencies are zero, as they corre- 
spond to chain translations. The frequencies of branch A 
are those of an elastic rod vibrating with displacements 
only along its axis (often called the longitudinal acoustic 
mode in polymer literature), while the points on branches 
C and D at k~=O are for an elastic rod vibrating with 
displacements in the two orthogonal directions perpendi- 
cular to the chain axis (transverse acoustic modes). 

(b) Coupling of defect mode to zigzag segments--general 
considerations 

In order to gain insight into the nature of the vib- 
rational coupling between a defect and the adjoining 
zigzag segments, the computed displacement amplitudes, 
or eigenvectors, are presented in the cartesian coordinate 
system described in the section on static calculations. The 
advantage of this coordinate system results from the 
characteristics of the dispersion curve for an isolated 
chain. In an isolated chain, branches B and D are 
dispersion curves for the out-of-plane vibrations. The 
branch B is recognized as twisting mode and the branch D 
as an out-of-plane bending mode 14. In an isolated chain 
these branches are recognized as torsional or out-of-plane 
transverse acoustical modes. Moreover, in the frequency 
region of interest here, branch A represents displacements 
which are almost entirely longitudinal, and branch C, 
transverse in-plane bending vibrations. Those character- 
istics of the isolated chain model are largely preserved in 
the lattice model employed here, except near k_ = (0, O, 0). 
The displacements of the modes with which a defect can 

couple at the natural frequency are then: longitudinal 
(Az), in-plane (Ax), and out-of-plane (Ay) transverse 
modes. 

It is of some interest to compare the defect-associated 
modes with the modes of a planar zigzag molecule, but the 
usual terminology of spectroscopy is inadequate to 
describe the defect-associated displacements. Computer 
graphics displays now make it feasible to observe the 
displacements in a movie-like display, and in the stereog- 
raphic views presented in this paper. 

The dispersion curves in Figure 6 are also plotted versus 
s, the number of C-C bonds between adjacent nodes. For  
the branches A, B, C and D the relationship between s and 
kz is as follows. If 2 is a wavelength and the crystallog- 
raphic repeat unit c is two CH 2 groups, then 2 = 2rr/kz and 
s = 2/c. Branch B is different in that the displacements Ay 
of two adjacent C atoms are generally of opposite sign. 
This means that each segment of the chain is rotating and 
in general the chain segments twist and untwist. This 
description conforms to the conventional designation of 
this branch as displaying a chain twist mode in the 
isolated chain model and s is a measure of the distance 
between nodes in the amount of twist. 

In Figure 6, the shading covers the part of the dispersion 
curves for which the corresponding frequencies are within 
the range that can couple to the lowest longitudinal 
frequency of the defect. The range of the possible values of 
the parameter s for each of the four branches within this 
frequency range is shown in Figure 6. Table I tabulates the 
range of s for the four branches. 

The coupling of the defect oscillator to the zigzag 
segments has been analysed only for relatively short 
oligomer chains, because the cost of the calculations 
grows rapidly with the chain length. The behaviour of 
tong chains can be deduced from the oligomer calcu- 
lations with the aid of dispersion curves for polyethylene 
shown in Figure 6. For the branches C and D, the 
parameter s which measures the half wavelength in the 
vibrating zigzag segment coupled to the defect, is suf- 
ficiently small (see also Table 2) so that the modes 
associated with branches C and D are easily observed in 
the systems calculated here. For  the branches A and B, s is 
large and the modes associated with these branches are 
affected by the shortness of the oligomers. Coupling to 
branch B is observed in short chains, by noticing the 
tendency of the bonded C atoms to have displacements of 
opposite sense, that is a tendency for the chain to rotate or 
twist. The dispersion curve leads to an estimate of s for the 
frequency of 100 cm-1,  at which coupling of defect to the 
branch B is observed (see Figure 6) as about 12. The 
observed value of s (see Figure 9 below) is about 6. This 
discrepancy could be attributed to the relative flatness of 
the B branch at low values of kz and to difficulty in 
correctly assessing the wavelength of the vibrating zigzag 
segment from the data based on short chains. Coupling to 
branch A cannot be observed in short chains. For  the 
branch A, s is around 20-30 and the longitudinal half 

Table 1 Ranges of expected values of s for  the four  branches 
of Figure 6, in the frequency range shown by the shaded part 

Branch A B C D 

s 22--29 12--** 4.2--5.2 3.6--4.3 

1554 POLYMER, 1984, Vol 25, November 



Crystallographic defect vibrations in polyethylene: D. t4. Reneker and J. Mazur 

Table 2 Coupling of defect to zigzag segments at the lowest longitudinal frequency of defects. Comparison of data from disposition curves 
with the data from the computed Eigenvectors 

Branch of dispersion s, (from Frequencies, in cm-1 ,  
k z • 108 curves (see Figure 7) displacement of zigzag C' 21 

Model u (cm -1 ) (cm -1 ) s at coupling point figures) with nearest s 

Dispiration near 100 0.12 1.0 B 1.0 100 (s=l) 
chain end of C 21 87 0.59 4.2 D 4.4 89 (s=4) 

84 0.47 5.2 C 6.0 86 (s=0) 

Dispiration near 106 0.68 3.6 D 4.0 107 (s=3); 89 (s=4) 
centre of C2t 99 0.55 4.5 C 4.5 118 (s=4) 

0.68 3.6 D 3.5 107 (s=3) a 
93 0.00 1.0 B 1.0 97 (s=l) 

0.52 4.8 C 5.0 86 (s=5) 

Disclination in C21 94 0.53 4.7 C 5.0 86 (s=5) 
0.64 3.9 D 4.0 89 (s=4) 

69 0.37 6.7 C 6.5 65 (s=6) 
0.42 5.9 D 5.2 75 (s=5) 

a One zigzag segment vibrates with almost equal displacements in two transverse direction. Behaviour of longer chains cannot be assessed 

wavelength is about 5 nm, a condition easily met in a real 
crystal, but not met in calculations for the short chains 
described in this work. 

(c) Defect mode coupling to zigzag segments from normal 
mode calculations 

In addition to the coupling of a defect with points on 
several different dispersion curves, the stems at opposite 
ends of the defect can also vibrate simultaneously in 
several modes associated with the same dispersion curve if 
the defect natural frequency is near a flat part of a 
dispersion curve or if the stem is very long so that allowed 
frequencies are closely spaced. For  example, for a dispi- 
ration near the chain end, two modes coupling with the 
branch B are observed in computations, one at 100 cm -  1, 
the other at 97 cm-1 (see also Figure 6 and Table 2). 
An example of a disclination that couples to two rather 
widely spaced frequencies will be discussed in more detail 
below. It will be shown that this large frequency split is a 
direct consequence of the shortness of the chain contain- 
ing the defect. 

Figures 7 9 show typical low-frequency displacements 
of atoms for a chain which contains a defect in a crystal. 
The modes shown were selected to show displacements 
which are associated with each of the three branches, B, C 
and D, shown in Figure 6. The part of the vibrating zigzag 
segment which is about one wavelength from the defect 
shows the characteristic displacements of the modes best. 
While the part of the zigzag segment near the defect shows 
a mixture of modes, ultimately the zigzag segment farther 
away from the defect must vibrate with displacement 
vectors characteristic of lattice vibrations. The dispiration 
located near the end of the C-21 oligomer provides the 
best examples, as the attached zigzag segment is as long as 
possible. The general description given for Figure 4 also 
applied to these Figures. The coordinate system in Figures 
7-9 is the same as that employed with the static calcula- 
tions. The two drawings at the left side and the two 
drawings at the right side are stereo pairs showing the 
displacements. The displacements shown are super- 
positions of two displacements, one at phase angle 0, the 
other one at phase 180 ° . All the displacements shown in 
the Figures were obtained by multiplying the ortho- 
normalized displacement eigenvectors by a constant, here 
0.3 nm. The real displacements are too small to be seen in 
these drawings. For  example at room temperature, the 

estimated longitudinal amplitudes of the terminal atoms 
do not exceed 0.006 nm. The graphs inserted between the 
two stereo parts in each one of the Figures 7-9 show the 
components of the displacement of each atom along the 
three cartesian coordinates. 

Figure 7, for v = 87 cm - 1, shows the defect coupled with 
a zigzag segment vibrating with out-of-plane bending 
displacements, associated with a point on the branch D. 
This Figure shows a small amount of twist near the defect. 
Figure 8, for v = 84 cm - 1, shows that the in-plane bending 
(associated with the branch C) is dominant. There is again 
a small amount of twist close to the defect. Figure 9, for 
v = 100 cm-1, shows that the zigzag segment twists, i.e., 
the zigzag vibrates with displacements associated with the 
branch B. There is a small amount of in-plane and out-of- 
plane bending in the zigzag segment displacements. All 
three Figures also show modest longitudinal displace- 
ments, which suggest that in a longer stem there would be 
coupling to a longitudinal acoustic mode of wavelength 
too long to be encompassed by our calculations on C-21 
oligomers. The longitudinal displacements are more 
dominant in Figure 9 than in Figures 7 and 8. The 
particular mode displayed by this Figure has the highest 
Raman intensity associated with this particular defect 
model and the position it occupies in the C-21 oligomer 
(see also Table 3 below). The LAM-1 like displacements 
provide the dominant part of the contribution of the 
defect itself toward the calculated Raman intensity. In 
long chains the presence of LAM displacements outside 
the defect could also affect the total Raman intensity for 
the particular defect mode. Besides the modes displayed in 
Figures 7-9, there are other modes which involve coupling 
between defects and lattice modes. Some are strongly 
affected by the chain ends. 

The defect modes are summarized in Table 2. The 
guideline for inclusion of a particular mode in this Table is 
the presence of distinct longitudinal displacements plus a 
significant calculated Raman intensity. Column 1 of this 
Table describes the kind and position of a defect in a C-21 
chain. Column 2 gives the frequency of the defect mode, 
i.e., the frequency of the defect coupled to the model 
crystal. In columns 3-5 we present data calculated from 
the dispersion curves shown in Figure 6 and Table 1. 
These are: k=, the component of the wave vector along the 
chain axis (column 3); s, the number of C~C bonds 
between nodes in the vibrating segment (column 4); 
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Table 3 Raman intensities attributed to defect oscillators 

p-I o~2 x 10 4a 
Model N u k (in cm - 1 )  c~ '~  k k k I / I L a m - 1 , ; : i g z a g b  

Dispiration 10 

Dispiration 16 

Dispiration near end 21 

Dispiration near 21 
centre 

Disclination near 21 
centre 

151 0.0139 0,921 0.161 

119 0.0123 0.136 
110 0.0020 1,216 0.022 

100 0.0109 0.152 
87 0.0059 2,004 0.083 
84 0.0024 0.064 

99 0.0071 0.105 
93 0.0061 1.713 0.092 
88 0.0030 0.051 

94 0.0044 0.917 0.063 
69 0.0031 0.064 

I Raman, k = 

(u k - -  Vo) 4 ~-k '2 -~k ,2 
co 

V k ( 1  - -  e--hcuk/k T) u k 

- ,2 
I k  ~ k  u Lam--1 

ILarn-  1 ~ L a m - l '  2 Vk 

designation of the particular branch of the set of disper- 
sion curves (column 5). In column 6 the parameter s, 
obtained directly from the displacement curves, is pre- 
sented. As is seen, values of s given in columns 4 and 6 
agree well. In column 7 an estimate of the frequency of the 
vibrating zigzag segment coupled to the defect is given for 
each of the cases described in this Table. This estimate is 

based on the independent computations of normal modes 
performed on a system built entirely of C-21 zigzag chains, 
with only the central chain vibrating. Each frequency in 
column 7 is accompanied, in parentheses, by a value of s 
defined here as (20)/(number of nodes). The number of 
nodes were calculated directly from the normal co- 
ordinate analysis performed on the C-21 oligomer in the 
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zigzag conformation. 
The displacements for a disclination at the two frequen- 

cies of 94 and 69 cm-  1 (last two lines in Table 2) show an 
interesting feature. The modes at these frequencies both 
show coupling with branch C at one side of the defect and 
branch D at the other side. The wavelengths of the two 
vibrating zigzag segments (C and D) at the lower fre- 
quency are longer than they are at the higher frequency as 
measured by an increase in the parameter s by 1, that is, 
the wavelength at the lower frequency is incremented by 
the length of one C~C bond (see Table 2). We explain the 
rather large frequency split by perturbation of the vib- 
rational energy levels created by chain-end effects. Appli- 
cation of the first order perturbation theory to the lowest 
longitudinal frequency of the disclination predicts that 
this frequency will be shifted by equal amounts up and 
down from the unperturbed defect frequency, which is 
calculated as equal 82 cm-1. Mathematically, there are 
two degenerate unperturbed defect frequencies, which are 
very close and which tend to separate as the result of the 
perturbation interactions. The frequency shift can be 
associated with the perturbation function W which 
represents the chain-end effects. W decreases with the 
increase in the chain length. This decrease of, W was also 
confirmed in ref. 15, where the perturbation effects were 
related to the mass differences between the terminal 
methyl groups and the methylene groups in crystalline n- 
alkanes. Thus, the rather large frequency difference be- 
tween the two disclination modes is considered to be an 
artifact of the system built of short oligomers. 

In this paper, we are primarily concerned with the 
coupling to zigzag segments at the lowest longitudinal 
frequency of a defect. At this frequency, the wavelength is 
approximately equal to twice the length of the defect. A 
bare defect displays other longitudinal modes. One mode, 

at v = 395 cm- t, has a wavelength equal to the length of 
the defect; another mode at v=518 cm -1, has a wave- 
length equal to 2/3 the defect length. 

As was the situation with the lowest longitudinal 
frequency of the defect, attaching a stem to a defect lowers 
the frequency of the higher order modes of the defect. At 
the frequency of the higher order modes only branches A 
and C provide lattice modes to which the defects can 
couple. These have sufficiently low values of s and were 
clearly observed in plots of displacements (not presented 
in this paper). 

IV. GENERAL ANALYSIS OF DEFECT 
COUPLING TO LATTICE VIBRATIONS 

(a) Phonons propagating in the chain direction 
Although the dispersion curves associated with the 

model used in our calculations demonstrate the general 
features of the coupling of defect and lattice vibrations, 
more realistic dispersion curves have been determined for 
polyethylene. Examination of these curves reveals the 
possibility of additional ways that defect and lattice 
vibrations can be coupled. 

In Figures 10 and 11, the dispersion curves of Figure 6 
are plotted alongside the similar dispersion curves for the 
orthorhombic lattice (Figure 10) and the triclinic lattice 
(Figure 11) of polyethylene. The data for these curves are 
adapted from the literature 6, to correspond to the first 
Brillouin zone. In an orthorhombic lattice, there are four 
additional branches (all optical) of the dispersion curves in 
the frequency region of interest. This is a consequence of 
having two chains in the Bravais unit cell. The number of 
different branches to which a defect in a real crystal can 
couple is greater in an orthorhombic lattice than it is in 
the lattice model employed in this work or in the triclinic 
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lattice. Inspection of Figure 10 indicates that the coup- 
ling of acoustic branches (one longitudinal, equivalent to 
our branch A, and two transverse, equivalent to our 
branches C and D) lead to approximately the same set of 
values of s, the number of C42 bonds between adjacent 
nodes in displacement curves as found with our lattice 
model. Figure I0 shows two branches, whose frequency 
does not vanish at k_=(0,0,0) (therefore called 'optical'). 
One of these two branches, which is a twisting mode, 
practically coincides with the branch B. The value of s for 
the defect coupling with this branch is about the same as 
for the single vibrating chain model used in our calcu- 
lations. Of the remaining four branches in the orthorhom- 
bic lattice, two intersect the frequency range of the lowest 
longitudinal frequencies of defects. These two transverse 
branches are designated in Figure 10 as E 1 and E 2. (In 
spectroscopy, the frequencies of these branches at the 
centre of the Brillouin zone are sometimes denoted as B~, 
and Bz. ). Since these dispersion curves are rather flat for 
0 < k= < 0.2 7t/c, showing little frequency dispersion in this 
region, the corresponding value of s can only be given as 
an inequality, s > 10. This indicates long waves. 

The calculated dispersion curves for the triclinic lattice 
(see Figure 11) show very close agreement with those for 
the C-21 oligomer for branches A, C and D for frequencies 
above 60 cm 1. The values ofs for the defect coupled with 
any one of these branches is therefore the same for both 
the model employed here and the triclinic lattice. For  the 
branch B, the two models differ considerably. 

(b) Phonons propagating in directions transverse to the 
chain axis 

Kitagawa and Miyazawa v presented a set of calculated 
dispersion curves for orthorhombic polyethylene crystals 
(see ref. 7; Figure V5, a-h). These Figures were examined 
for possible interactions of the crystal modes represented 
by the dispersion curves with a defect vibrating at its 
natural frequency for propagation directions other than 
the chain axis direction. The Kitagawa and Miyazawa 
dispersion curves give the frequencies for the wave vectors 
that terminate on the edges of the reciprocal unit cell. The 
results of this examination are summarized as follows: 

(1) For  the k vectors which terminate along the three 
edges of the reciprocal cell that are parallel to the chain 
axis but do not terminate at the origin, the defect can 
couple with the same number of branches at the same 
values of s as was the case for k = (0,0, k=). 

(2) The six acoustical branches for k transverse to the 
chain axis in the two orthogonal dir~t ions have lower 
frequencies than is the case with k=(O,O, kz). This is a 
consequence of the fact that intermolecular forces are 
much weaker than the forces responsible for the skeletal 
deformations. Since the lowest longitudinal frequency of 
the defects is higher than the maximum frequencies of 
these acoustical modes, no coupling occurs with these 
acoustic branches. Only one 'optical' branch can interact 
with the defect. This branch has its maximum frequency at 
the point k=(0,0,0). However, since this maximal fre- 
quency associated with this optical branch exceeds, albeit 
only slightly, the lowest longitudinal frequency of the 
vibrating defect, coupling to the defect mode can occur. 
This optical branch shows little dependence on k around 
the frequency of the defect. Hence the value of sa t  which 
coupling to the defect can occur is estimated only as an 
inequality, specifically, s > 6. 

(3) For  the k vectors with k= = 0 which terminate along 
the edges of the reciprocal cell which do not pass through 
k=(0,0,0),  the defect couples with the same number of 
branches and at the same values of s, as described in (2). 

(4) For  the k vectors which terminate along the edges of 
the reciprocal cell for which kz = ~t/c, while one of the two 
other components of the wavevector is varied, the other 
one assuming either zero or its maximum value, there is 
no coupling between the lowest longitudinal defect 
frequency and these dispersion curves. The dispersion 
curves each have a constant frequency which is either 
higher or lower than the defect frequency [see also Figure 
10 which shows those frequencies on the (0, 0,~z/c) axis]. 

V. RAMAN INTENSITIES OF DEFECT 
OSCILLATORS 

The lowest longitudinal frequency of the defect is Raman- 
active since the asosciated displacements in the longitu- 
dinal direction are monotonic functions of position along 
the chain axis. There are, in our normal mode calcula- 
tions, frequencies which are lower than the lowest longitu- 
dinal natural frequency of the defect. They belong to 
modes which are predominantly transverse. These fre- 
quencies, which occupy a range of 7 0 ~ 0  cm-1,  couple 
with zigzag modes in similar frequency range. These defect 
modes were found to be practically Raman-inactive. 
However, they could be infrared-active. 

Raman polarizabilities associated with the defor- 
mations of the C-C bonds and the C-C-C  bond angles 
can be calculated by a dot product z, or by a bond 
polarizability method. The second method is employed 
here as it yields absolute values of relative intensities. In 
this method, the cartesian displacements are transformed 
to displacements (amplitudes) of internal coordinates, via 
the B matrix transformation, as described in the mono- 
graph by Wilson, Decius and Cross 16. The quantity we 
calculate is the mean squared polarizability am'Z, associated 
with a mode m. Following the method of Mazur and 
Fanconi 15 the mean polarizability is taken as a sum of the 
molecular polarizability associated with bond length and 
the C-C-C  bond angle, since the mean derived polarizabi- 
lities for the C-C bond and the C-C C bond angle are 
assumed to be equal. 

In the frequency range of interest, the intensity scat- 
tered by the defect oscillator can be assumed to be 
proportional to the squared mean polarizability of the 
bonds in the C-21 chain and inversely proportional to the 
frequency. In this approximation, the temperature effects 
which enter via the Boltzmann factor in the quantum 
mechanical expression for the intensity scattered by a 
molecule, are neglected. In the calculations, all the N 
bonds and the N-1 skeletal bond angles are included. We 
also calculated separately the contribution to the Raman 
intensity from the defect only. It turned out that, for the 
frequencies associated with the lowest longitudinal defect 
frequency, the Raman intensity is mostly confined to the 
defect. However, there is a significant contribution to the 
Raman intensity from the zigzag segments near the defect. 
Table 3 summarizes the results. In this Table, in addition 
to the calculated squared mean polarizabilities for the 
entire chain, we also present the ratio of the calculated 
intensities to those for the LAM-1 mode in a zigzag 
segment having the same number of carbon atoms as are 
in the defect-containing oligomer. Table 3 shows that, 

POLYMER, 1984, Vol 25, November 1559 



Crystallographic defect vibrations in polyethylene: D. H. Reneker and J. Mazur 

2 0  

I0  
U3 4~  

r -  

U3 
I 

0 

o 
o3 
(3 
> .  

.e 20  
¢.- 

..t-' 
r -  

m 

I O -  

o_h 
2 5 0  2 0 0  150 I 0 0  5 0  0 

Frequency (cm -=) 

Figure 12 Spectrum for C-21 with a dispiration. Frequency 
range is 250 cm -1 to O. Top plot: dispiration is located near end 
of chain. Bottom plot: dispiration is located near middle of chain. 
The frequency range which includes the intensities attributed to 
the longitudinal vibrations of the defect are indicated by the 
shading 

approximately, the sum of intensities of all the modes to 
which a particular defect is coupled tends to be inde- 
pendent of the length of the defect-containing chain. The 
deviations from a constant sum are attributed to the 
following chain-length effects: the Raman intensity in- 
volves derivatives of the internal coordinates with respect 
to the position coordinates in the cartesian coordinate 
system. Small deviations of the positions of the carbon 
atoms located near the defect from their perfect zigzag 
conformation can contribute significantly to the mean 
molecular polarizability and to the related Raman in- 
tensity of the chain. In longer zigzag chain segments these 
effects will tend to be localized, that is, the Raman 
intensity will be independent of the chain length. 

There are other defect modes which are associated with 
longitudinal wavelengths which are shorter than twice the 
defect length. These defect modes, by the virtue of their 
couplings to the higher-order longitudinal modes of the 
zigzag segments, contribute to the Raman intensities 
outside the frequency range covered by_the Table 3. In 
Figure 12 we present the intensities, defined as ~'2/v k 
versus the frequency. The Figure covers the frequency 
range 0 < v < 250 cm-1. The upper plot is for the dispi- 
ration near the end of the C-21 chain, and the lower plot is 

for the same defect, but located near the middle of the C- 
21 chain. These plots show the existence of a group of 
normal modes in the frequency range below 110cm -1 
which is attributed to the lowest longitudinal frequency of 
the defect. This group which is indicated by the shaded 
part of Figure 12, is seen to occupy the same frequency 
range for both positions of the defect in the stem. On the 
other hand, intensities at frequencies above l l0cm -1 
tend to strongly depend on the defect location in the stem. 
If we sum the intensities in Figure 12 in the entire 
frequency range shown therein, the resulting sum is 
almost equal to the intensity of the LAM-1 frequency of 
the zigzag C-21. This constancy of the sum of intensities 
agrees well with the experimental finding of Snyder and 
Scherer 17. 

Can the predicted Raman bands, at frequencies around 
the lowest longitudinal frequency of the defect, be obser- 
ved in the experimental spectra? Perhaps. Figure 13 
shows the low frequency portion of the Raman spectrum 
of crystalline polyethylene. The data in this Figure are 
taken from ref. 8. One notices that, near a band at 
108 cm -~, which is attributed to the rotational lattice 
vibrations of the chain about its axis, there is an intense 
irregular background. This background might be attri- 
buted to the presence of defects, which provide a way of 
coupling the light waves and lattice vibrations that is not 
possible in a perfect crystal. The data in Figure 12 and the 
supporting normal mode calculations lead to the follow- 
ing conclusions. In oligomers, there are two kinds of 
contributions to the Raman intensities; those which 
depend on the defect position in the chain and those 
which are independent of it. The independent ones, which 
originate in the defect and the carbon atoms nearby, 
occupy the frequency range 110 to 85 cm -1. In short 
chains, on which our calculations are based, the modes 
with Raman intensities which are dependent on the defect 
position are in the frequency range above the range 
associated with the lowest longitudinal frequency of the 
defects. In long chains, these position-dependent Raman 
intensities will be at lower frequencies. Normal coordinate 
analysis provides the following argument in support of 
this conclusion. Longitudinal waves of the vibrating 
zigzag segments which are coupled to a defect and which 
contribute to the calculated high Raman intensities are 
associated with displacements which form a monotonic 
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Figure 13 Low frequency Raman spectrum of polyethylene. 
Data taken from ret. 8 
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function of the atomic position along the chain axis. These 
longitudinal waves start at one of the two chain ends and 
terminate at the defect. The frequency of these longitu- 
dinal modes is near the frequency for LAM-1 of the zigzag 
oligomer having the same length as the length of the 
longitudinally vibrating zigzag segment in the coupled 
system. When the defect is near one end of the oligomer, 
the longitudinally vibrating segment is longer and the 
associated Raman intensity will be at lower frequency, 
than is the case for the defect occupying the middle part of 
the chain. Figure 12 illustrates this fact. The Raman 
intensity at v=175 cm -1, lower plot, and the Raman 
intensity at v = 220 cm - 1, upper plot, are associated with 
longitudinally vibrating zigzag segments. 

The classification of the low-frequency Raman 
intensities presented above holds also for long chains. 
However, since the Raman intensities are inversely pro- 
portional to the index of LAM, the intensities which 
depend on the defect position, that is, which originate 
from the longitudinally vibrating zigzag segments, will 
tend to be grouped near the LAM-1 frequency of the 
zigzag chain with the same number  of C atoms. 

Currently, calculations are being performed on infra- 
red intensities of polyethylene. The purpose of these 
calculations is to determine whether there is evidence for 
defect related infra-red activity, in particular at low 
frequency range investigated in this work. 

C O N C L U S I O N S  

Defects have a lowest longitudinal frequency that is 
associated with the motions of the atoms within the defect 
parallel to the stem axis. Defect vibrations couple to 
lattice vibrations. Attaching stems to a defect significantly 
lowers the frequency of a bare defect. This frequency 
lowering is attributed to the mass perturbation effects of 
the coupled stems. 

The lowest longitudinal frequency of a defect imbedded 
in a crystal can, in a long stem, find many modes of the 
zigzag segment which vibrate with nearby frequencies. 
The lowest longitudinal frequencies of dispirations, discli- 
nations and dislocations in a single stem lay in the range 
85 cm-1-105 cm -1. This is a consequence of the simil- 
arity in lengths, masses and effective moduli for these 
defects. 

The normal coordinate analysis described in this paper 
leads to the suggestion that defects provide coupling 
between light waves and the lattice modes that affect the 
Raman spectra, but would not be seen in the absence of 
the defects. 

The principal effect of the defects on the Raman spectra 
is in the vicinity of 100 cm-1 ,  probably as an increase in 
the baseline or as the presence of wide and weak bands. 
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